Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №31» г. Уссурийска Уссурийского городского округа

Рассмотрено на заседании ШМО математики, информатики Протокол № 1 от 31.08.2017 руководитель ШМО —Дмитренко Л.Н.

Согласовано

Заместитель директора по УР Стольникова Н.К. Директор

Утверждаю

Старкин С.Д.

Приказ от

№ ___

Рабочая программа

Физика

(наименование учебного предмета, курса, дисциплины, модуля)

7-9 классы

основное общее образование

уровень образования

ПРОГРАММА ДЛЯ 7-9 КЛАССОВ ОСНОВНОЙ ШКОЛЫ

1. Пояснительная записка

Рабочая программа по физике для основной школы разработана в соответствии:

Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Минобрнауки от 17.12.2010 № 1897 и Основной образовательной программы основного общего образования Муниципального бюджетного образовательного учреждения «Средняя общеобразовательная школа №31» г. Уссурийска Уссурийского городского округа, с авторской программой основного общего образования по физике для 7-9 классов (Н.В. Филонович, Е.М. Гутник, М., «Дрофа», 2012 г.)

Физика как учебный предмет в системе основного общего образования играет фундаментальную роль в формировании у учащихся системы научных представлений об окружающем мире, основ научного мировоззрения. В процессе изучения физики решаются задачи развития интеллектуальных способностей и познавательных интересов школьников, овладения ИМИ основами диалектического мышления, привития вкуса к постановке и разрешению проблем. Приобретённые школьниками физические знания дальнейшем базисом при изучении химии, биологии, физической географии, технологии, ОБЖ. Это требует самого тщательного отбора содержания предметного наполнения дисциплины и методов её изучения.

Основные линии развития учащихся средствами предмета «Физика»

Изучение физики в образовательных учреждениях основного общего образования направлено на реализацию следующих линий развития учащихся средствами предмета:

- 1)Формирование основ научного мировоззрения и физического мышления. Освоение знаний об основных методах научного познания природы, характерных для естественных наук (экспериментальном и теоретическом); физических явлениях; величинах, характеризующих явления; законах, которым явления подчиняются.
- 2) Проектирование и проведение наблюдения природных явлений с использованием необходимых измерительных приборов. Умение обрабатывать результаты наблюдений или измерений и представлять их в различной форме, выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения природных явлений, принципов действия отдельных технических устройств, решать физические задачи.
- 3) Диалектический метод познания природы. Формирование понимания необходимости усвоения физических знаний как ядра гуманитарного образования, необходимости общечеловеческого контроля разумного использования достижений науки и технологий для дальнейшего развития общества и разрешения глобальных проблем.

- 4) Развитие интеллектуальных и творческих способностей. Умение ставить и разрешать проблему при индивидуальной и коллективной познавательной деятельности.
- 5) Применение полученных знаний и умений для решения практических задач повседневной жизни. Оценка результатов своих действий, применения ряда приборов и механизмов; обеспечение рационального и безопасного поведения по отношению к себе, обществу, природе.

При преподавании физики в 7–9 классах достижение сформулированных выше общих линий развития учащихся осуществляется в объёме, определяемом содержанием учебного предмета в данном классе.

2. Общая характеристика учебного предмета «ФИЗИКА»

Школьный курс физики — системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе содержания курсов химии, биологии, географии и астрономии.

Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире. В 7 и 8 классах происходит знакомство с физическими явлениями, методом научного познания, формирование основных физических понятий, приобретение умений измерять физические величины, проводить лабораторный эксперимент по заданной схеме. В 9 классе начинается изучение основных физических законов, лабораторные работы становятся более сложными, школьники учатся планировать эксперимент самостоятельно.

Программа по физике определяет цели изучения физики в основной школе, содержание тем курса, дает распределение учебных часов по разделам курса, перечень рекомендуемых демонстрационных экспериментов учителя, опытов и лабораторных работ, выполняемых учащимися, а также планируемые результаты обучения физике.

Цели изучения физики в основной школе следующие:

- развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;
- понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;
 - формирование у учащихся представлений о физической картине мира. Достижение этих целей обеспечивается решением следующих задач:
- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;

- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

2. Место предмета «Физика» в учебном плане

В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Физика» изучается с 7-го по 9-й класс. Общее количество уроков в неделю с 7-го по 9-й класс составляет 6 ч. (7–9-й классы – по 2 часа в неделю).

В соответствии с учебным планом курсу физики предшествует курс «Окружающий мир», включающий некоторые знания из области физики и астрономии. В 5—6 классах - преподавание курса «Введение в естественнонаучные предметы. Естествознание», как пропедевтика курса физики. В свою очередь, содержание курса физики основной школы, являясь базовым звеном в системе непрерывного естественнонаучного образования, служит основой для последующей уровневой и профильной дифференциации.

3. Личностные, метапредметные и предметные результаты освоения учебного предмета «Физика»

Личностными результатами обучения физике в основной школе являются:

- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
 - самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами обучения физике в основной школе являются:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;

- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частными предметными результатами обучения физике в основной школе, на которых основываются общие результаты, являются:

- понимание и способность объяснять такие физические явления, как свободное падение тел, колебания нитяного и пружинного маятников, атмосферное давление, плавание тел, диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел, процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризация тел, нагревание проводников электрическим током, электромагнитная индукция, отражение и преломление света, дисперсия света, возникновение линейчатого спектра излучения;
- умения измерять расстояние, промежуток времени, скорость, ускорение, массу, силу, импульс, работу силы, мощность, кинетическую энергию, потенциальную энергию, температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;
- •владение экспериментальными методами исследования в процессе самостоятельного изучения зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объема вытесненной воды, периода колебаний маятника от его длины, объема газа от давления при постоянной температуре, силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала, направления индукционного тока от условий его возбуждения, угла отражения от угла падения света;

- понимание смысла основных физических законов и умение применять их на практике: законы динамики Ньютона, закон всемирного тяготения, законы Паскаля и Архимеда, закон сохранения импульса, закон сохранения энергии, закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца;
- понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- овладение разнообразными способами выполнения расчетов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.).

Содержание учебного предмета «Физика»

Содержание учебного предмета соответствует Федеральному государственному образовательному стандарту основного общего образования.

В данной части программы приведено рекомендуемое распределение учебных часов по разделам курса, определена последовательность изучения учебных тем в соответствии с задачами обучения. Указан минимальный перечень демонстраций, проводимых учителем в классе, лабораторных работ и опытов, выполняемых учениками.

7 класс Физика и физические методы изучения природы. (4 ч)

Физика — наука о природе. Наблюдение и описание физических явлений. Физические приборы. Физические величины и их измерение. Погрешности измерений. Международная система единиц. Физика и техника. Физика и развитие представлений о материальном мире.

Демонстрации.

Примеры механических, тепловых, электрических, магнитных и световых явлений. Физические приборы.

Лабораторные работы и опыты.

Измерение физических величин с учетом абсолютной погрешности. Измерение длины. Измерение температуры.

Первоначальные сведения о строении вещества. (6 ч)

Строение вещества. Диффузия. Взаимодействие частиц вещества. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Демонстрации.

Диффузия в газах и жидкостях. Сохранение объема жидкости при изменении формы сосуда. Сцепление свинцовых цилиндров. *Лабораторная работа*. Измерение размеров малых тел.

Взаимодействие тел. (25 ч)

Механическое движение. Относительность механического движения. Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Неравномерное движение. Явление инерции. Масса тела. Измерение массы тела с помощью весов. Плотность вещества. Методы измерения массы и плотности. Взаимодействие тел. Сила. Правило сложения сил, действующих по одной прямой. Сила упругости. Закон Гука. Методы измерения силы. Динамометр. Графическое изображение силы. Явление тяготения. Сила тяжести. Связь между силой тяжести и массой. Вес тела. Сила трения. Трение скольжения, качения, покоя. Подшипники. Центр тяжести тела.

Демонстрации.

Равномерное прямолинейное движение. Относительность движения. Явление инерции. Взаимодействие тел. Сложение сил. Сила трения.

Лабораторные работы.

Изучение зависимости пути от времени при прямолинейном равномерном движении. Измерение скорости. Измерение массы тела на рычажных весах. Измерение объема твердого тела. Измерение плотности твердого тела. Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины. Исследование зависимости силы трения скольжения от силы нормального давления. Определение центра тяжести плоской пластины.

Давление твердых тел, газов, жидкостей. (19 ч)

Давление. Давление твердых тел. Давление газа. Объяснение давления на основе молекулярно-кинетических представлений. Закон Паскаля. Давление в жидкости и газе. Сообщающиеся сосуды. Шлюзы. Гидравлический пресс. Гидравлический тормоз.

Атмосферное давление. Опыт Торричелли. Методы измерения давления. Барометр-анероид. Изменение атмосферного давления с высотой. Манометр. Насос.

Закон Архимеда. Условие плавания тел. Плавание тел. Воздухоплавание.

Демонстрации. Зависимость давления твердого тела на опору от действующей силы и площади опоры. Обнаружение атмосферного давления. Измерение атмосферного давления барометром-анероидом. Закон Паскаля. Гидравлический пресс. Закон Архимеда.

Лабораторные работы.

Измерение давления твердого тела на опору. Измерение выталкивающей силы, действующей на погруженное в жидкость тело. Выяснение условий плавания тела в жидкости.

Работа и мощность. Энергия. (13 ч)

Работа силы, действующей по направлению движения тела. Мощность. Кинетическая энергия движущегося тела. Потенциальная энергия тел. Превращение одного вида механической энергии в другой. Методы измерения работы, мощности и энергии.

Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тела с закрепленной осью вращения. Виды равновесия тел.

«Золотое правило» механики. Коэффициент полезного действия.

Демонстрации. Простые механизмы.

Лабораторные работы.

Выяснение условия равновесия рычага. Измерение КПД при подъеме тела по наклонной плоскости.

Итоговое повторение (3 ч)

8 класс Тепловые явления (12 часов)

Тепловое движение. Термометр. Связь температуры со средней скоростью движения его молекул. Внутренняя энергия. Два способа изменения внутренней энергии: теплопередача и работа. Виды теплопередачи. Количество теплоты. Удельная теплоемкость вещества. Удельная теплота сгорания топлива. Закон сохранения энергии в механических и тепловых процессах.

Демонстрации.

Изменение энергии тела при совершении работы. Конвекция в жидкости. Теплопередача путем излучения. Сравнение удельных теплоемкостей различных веществ.

Лабораторные работы и опыты.

Исследование изменения со временем температуры остывающей воды. Сравнение количеств теплоты при смешивании воды разной температуры. Измерение удельной теплоемкости твердого тела.

Изменение агрегатных состояний вещества (11 часов)

Агрегатные состояния вещества. Плавление и отвердевание тел. Температура плавления. Удельная теплота плавления. Испарение и конденсация. Насыщенный пар. Относительная влажность воздуха и ее измерение. Психрометр. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Объяснение изменения агрегатных состояний на основе молекулярно-кинетических представлений. Преобразования энергии в тепловых двигателях. Двигатель внутреннего сгорания. Паровая турбина. Холодильник. КПД теплового двигателя.

Экологические проблемы использования тепловых машин.

Демонстрации.

Явление испарения. Кипение воды. Зависимость температуры кипения от давления. Плавление и кристаллизация веществ. Измерение влажности воздуха психрометром. Устройство четырехтактного двигателя внутреннего сгорания. Устройство паровой турбины.

Лабораторная работа. Измерение относительной влажности воздуха.

Электрические явления (27 часов)

Электризация тел. Два рода электрических зарядов. Проводники, непроводники (диэлектрики) и полупроводники. Взаимодействие заряженных тел. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атомов.

Электрический ток. Гальванические элементы и аккумуляторы. Действия электрического тока. Направление электрического тока. Электрическая цепь. Электрический ток в металлах. Носители электрического тока в полупроводниках, газах и электролитах. Полупроводниковые приборы. Сила тока. Амперметр. Электрическое напряжение. Вольтметр. Электрическое сопротивление. Закон Ома для участка электрической цепи. Удельное электрическое сопротивление. Реостаты. Последовательное и параллельное соединения проводников.

Работа и мощность тока. Количество теплоты, выделяемое проводником с током. Лампа накаливания. Электрические нагревательные приборы.

Электрический счетчик. Расчет электроэнергии, потребляемой электроприбором. Короткое замыкание. Плавкие предохранители.

Демонстрации.

Электризация тел. Два рода электрических зарядов. Устройство и действие электроскопа. Проводники и изоляторы. Электризация через влияние. Перенос электрического заряда с одного тела на другое. Источники постоянного тока. Составление электрической цепи.

Лабораторные работы.

Сборка электрической цепи и измерение силы тока в ее различных участках. Измерение напряжения на различных участках электрической цепи. Регулирование силы тока реостатом. Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении. Измерение сопротивления. Измерение работы и мощности электрического тока в лампе.

Электромагнитные явления (7 часов)

Магнитное поле тока. Электромагниты и их применение. Постоянные магниты. Магнитное поле Земли. Магнитные бури. Действие магнитного поля на проводник с током. Электродвигатель. Динамик и микрофон.

Демонстрации.

Опыт Эрстеда. Принцип действия микрофона и громкоговорителя.

Лабораторные работы.

Сборка электромагнита и испытание его действия. Изучение электрического двигателя постоянного тока (на модели).

Световые явления (9 часов)

Источники света. Прямолинейное распространение света в однородной среде. Отражение света. Закон отражения. Плоское зеркало. Преломление света.

Линза. Фокусное расстояние и оптическая сила линзы. Построение изображений в линзах. Глаз как оптическая система. Дефекты зрения. Оптические приборы.

Демонстрации.

Источники света. Прямолинейное распространение света. Закон отражения света. Изображение в плоском зеркале. Преломление света. Ход лучей в собирающей и рассеивающей линзах. Получение изображений с помощью линз. Принцип действия проекционного аппарата. Модель глаза.

Лабораторные работы.

Исследование зависимости угла отражения от угла падения света. Исследование зависимости угла преломления от угла падения света. Измерение фокусного расстояния собирающей линзы. Получение изображений.

Итоговое повторение (2 часа) 9 класс

Законы взаимодействия и движения тел (26 часов)

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение. Мгновенная скорость. Ускорение. Графики зависимости скорости и перемещения от времени при прямолинейном равномерном и равноускоренном движениях. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Первый, второй и третий законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. Искусственные спутники Земли. Импульс. Закон сохранения импульса. Реактивное движение.

Демонстрации.

Относительность движения. Равноускоренное движение. Свободное падение тел в трубке Ньютона. Направление скорости при равномерном движении по окружности. Второй закон Ньютона. Третий закон Ньютона.

Невесомость. Закон сохранения импульса. Реактивное движение..

Лабораторные работы и опыты.

Исследование равноускоренного движения без начальной скорости.

Измерение ускорения свободного падения.

Механические колебания и волны. Звук. (11 часов)

Колебательное движение. Пружинный, нитяной, математический маятники. Свободные и вынужденные колебания. Затухающие колебания. Колебательная система. Амплитуда, период, частота колебаний. Превращение энергии при колебательном движении. Резонанс.

Распространение колебаний в упругих средах. Продольные и поперечные волны. Длина волны. Скорость волны. Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо.

Демонстрации.

Механические колебания. Механические волны. Звуковые колебания. Условия распространения звука. Лабораторная работа. Исследование зависимости периода колебаний пружинного маятника от массы груза и жесткости пружины. Исследование зависимости периода и частоты свободных колебаний нитяного маятника от длины нити.

Электромагнитное поле (12 часов)

Магнитное поле. Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние.

Электромагнитное поле. Электромагнитные волны. Скорость электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Конденсатор. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Типы оптических спектров. Поглощение и испускание света атомами.

Происхождение линейчатых спектров.

Демонстрации.

Устройство конденсатора. Энергия заряженного конденсатора. Электромагнитные колебания. Свойства электромагнитных волн. Дисперсия света. Получение белого света при сложении света разных цветов.

Лабораторные работы.

Изучение явления электромагнитной индукции. Наблюдение сплошного и линейчатого спектров.

Строение атома и атомного ядра. 14 часов

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета-, гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Методы наблюдения и регистрации частиц в ядерной физике.

Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы использования АЭС. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

Демонстрации.

Модель опыта Резерфорда. Наблюдение треков в камере Вильсона. Устройство и действие счетчика ионизирующих частиц.

Лабораторные работы.

Изучение деления ядра атома урана по фотографии треков. Изучение треков заряженных частиц по готовым фотографиям. Измерение естественного радиационного фона дозиметром.

Строение и эволюция Вселенной. 5 часов.

Геоцентрическая и гелиоцентрическая система мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной системы. Физическая природа Солнца и звезд. Строение Вселенной. Эволюция Вселенной.

Тематическое планирование

	Количество часов, отведенных на изучение физики в основной школе					
№	Тема (раздел) /класс	7 клас с	8 класс	9 класс	всего	
1	Физика и физические методы изучения природы	4	-	-	4	
2	Механические явления	58		37	95	
3	Тепловые явления	6	25	-	31	
4	Электрические и магнитные явления	-	34	-	34	
5	Электромагнитные колебания и волны	ı	9	12	21	
6	Квантовые явления	-	-	14	14	
7	Строение и эволюция Вселенной	-	-	5	5	
8	Итоговое повторение	2	2	2	6	
	Всего	68	68	68	204	
9	Лабораторные работы	11	10	6	27	
10	Контрольные работы	4	5	3	12	
11	Резерв	0	0	0	0	

Учебно-методический и материально-техническое обеспечение образовательного процесса:

УМК «Физика. 7 класс»

Физика. 7 класс. Учебник (автор А. В. Перышкин).

Физика. Рабочая тетрадь. 7 класс (авторы Т. А. Ханнанова, Н. К. Ханнанов).

Физика. Методическое пособие. 7 класс (авторы Е. М. Гутник, Е. В.

Рыбакова).

Физика. Тесты. 7 класс (авторы Н. К. Ханнанов, Т. А. Ханнанова).

Физика. Дидактические материалы. 7 класс (авторы А. Е. Марон, Е. А. Марон).

Физика. Сборник вопросов и задач. 7—9 классы (авторы А. Е. Марон, С. В.

Позойский, Е. А. Марон).

Электронное приложение к учебнику. УМК «Физика. 8 класс» Физика.

8 класс. Учебник (автор А. В. Перышкин).

Физика. Методическое пособие. 8 класс (авторы Е. М. Гутник, Е. В.

Рыбакова, Е. В. Шаронина).

Физика. Тесты. 8 класс (авторы Н. К. Ханнанов, Т. А. Ханнанова).

Физика. Дидактические материалы. 8 класс (авторы А. Е. Марон, Е. А. Марон).

Физика. Сборник вопросов и задач. 7—9 классы (авторы А. Е. Марон, С. В.

Позойский, Е. А. Марон).

Электронное приложение к учебнику. УМК «Физика. 9 класс»

Физика. 9 класс. Учебник (авторы А. В. Перышкин, Е. М. Гутник).

Физика. Тематическое планирование. 9 класс (автор Е. М. Гутник).

Физика. Тесты. 9 класс (авторы Н. К. Ханнанов, Т. А. Ханнанова).

Физика. Дидактические материалы. 9 класс (авторы А. Е. Марон, Е. А. Марон).

Физика. Сборник вопросов и задач. 7—9 классы (авторы А. Е. Марон, С. В. Позойский, Е. А. Марон).

Электронное приложение к учебнику.

Электронные учебные издания:

Физика. Библиотека наглядных пособий. 7—11 классы (под редакцией Н. К. Ханнанова).

Лабораторные работы по физике. 7 класс (виртуальная физическая лаборатория).

Лабораторные работы по физике. 8 класс (виртуальная физическая лаборатория).

Лабораторные работы по физике. 9 класс (виртуальная физическая лаборатория).

Список наглядных пособий:

Таблицы общего назначения

1. Международная система единиц (СИ).

- 2. Приставки для образования десятичных кратных и дольных единиц.
- 3. Физические постоянные.
- 4. Шкала электромагнитных волн.
- 5. Правила по технике безопасности при работе в кабинете физики.
- 6. Меры безопасности при постановке и проведении лабораторных работ по электричеству.

Тематические таблицы

- 1. Броуновское движение. Диффузия.
- 2. Поверхностное натяжение, капиллярность.
- 3. Манометр.
- 4. Строение атмосферы Земли.
- 5. Атмосферное давление.
- 6. Барометр-анероид.
- 7. Виды деформаций I.
- 8. Виды деформаций II.
- 9. Глаз как оптическая система.
- 10. Оптические приборы.
- 11. Измерение температуры.
- 12. Внутренняя энергия.
- 13. Теплоизоляционные материалы.
- 14. Плавление, испарение, кипение.
- 15. Двигатель внутреннего сгорания.
- 16. Двигатель постоянного тока.
- 17. Траектория движения.
- 18. Относительность движения.
- 19. Второй закон Ньютона.
- 20. Реактивное движение.
- 21. Космический корабль «Восток».
- 22. Работа силы.
- 23. Механические волны.
- 24. Приборы магнитоэлектрической системы.
- 25. Схема гидроэлектростанции.
- 26. Трансформатор.
- 27. Передача и распределение электроэнергии.
- 28. Динамик. Микрофон.
- 29. Модели строения атома.
- 30. Схема опыта Резерфорда.
- 31. Цепная ядерная реакция.
- 32. Ядерный реактор.
- 33. Звезды.

- 34. Солнечная система.
- 35. Затмения.
- 36. Земля планета Солнечной системы. Строение Солнца.
- 37. Луна.
- 38. Планеты земной группы.
- 39. Планеты-гиганты.
- 40. Малые тела Солнечной системы.

Оборудование и приборы.

Обучение ведется в кабинете физики, оснащённом в соответствии с типовым перечнем оборудования, что позволяет выполнить практическую часть программы (демонстрационные эксперименты, фронтальные опыты, лабораторные работы), а также организовать учебные занятия в интерактивной форме.

Номенклатура учебного оборудования по физике определяется стандартами физического образования, минимумом содержания учебного материала, базисной программой общего образования. Лабораторное и демонстрационное оборудование указано в Перечне учебного оборудования по физике для общеобразовательных учреждений РФ.

Для постановки демонстраций достаточно одного экземпляра оборудования, для фронтальных лабораторных работ не менее одного комплекта оборудования на двоих учащихся.

Планируемые результаты изучения предмета «ФИЗИКА» Механические явления Выпускник научится:

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;
- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, I, II и III законы Ньютона, закон сохранения

импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;

различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);

- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления

Выпускник научится:

- распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;
- различать основные признаки моделей строения газов, жидкостей и твёрдых тел;
- решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

•использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического

поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;

- приводить примеры практического использования физических знаний о тепловых явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов:
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока,

фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

- приводить примеры практического использования физических знаний о электромагнитных явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля—Ленца и др.);
- приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;
- описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.

Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;

понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

- различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;
- понимать различия между гелиоцентрической и геоцентрической системами мира.

Выпускник получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планетгигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;
- различать основные характеристики звёзд (размер, цвет, температура), соотносить цвет звезды с её температурой;
 - различать гипотезы о происхождении Солнечной системы.